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Sensory integration theory predicts natural selection should favour adaptive
responses of animals to multiple forms of information, yet empirical tests
of this prediction are rare, particularly in free-living mammals. Studying
indirect predator cues offers a salient opportunity to inquire about multi-
modal risk assessment and its potentially interactive effects on prey
responses. Here we exposed California ground squirrels from two study
sites (that differ in human and domestic dog activity) to acoustic and/or
olfactory predator cues to reveal divergent patterns of signal dominance.
Olfactory information most strongly predicted space use within the testing
arena. That is, individuals, especially those at the human-impacted site,
avoided coyote urine, a danger cue that may communicate the proximity
of a coyote. By contrast, subjects allocated less time to risk-sensitive beha-
viours when exposed to acoustic cues. Specifically, although individuals
were consistent in their behavioural responses across trials, ‘quiet coyotes’
(urine without calls) significantly increased the behavioural reactivity of
prey, likely because coyotes rarely vocalize when hunting. More broadly,
our findings highlight the need to consider the evolution of integrated fear
responses and contribute to an emerging understanding of how animals
integrate multiple forms of information to trade off between danger and
safety cues in a changing world.
1. Introduction
Evolutionary biologists have long recognized that many animals produce, per-
ceive and respond to multiple forms of information from their environment
[1,2]. In many cases, information includes multiple sensory modalities with
visual, tactile, acoustic and/or chemical components [3,4]. Sexually selected
traits, for example, are widely recognized for combining visual, chemical and/
or acoustic signals to attract mates [5]. Indeed, multimodal courtship displays
are commonly produced and assessed for their quality by animals from beetles
[6] to birds and frogs [7,8]. Moreover, prey from invertebrates [9,10] to birds
[11] and mammals [12] also combine two or more signal components to deceive
predators. Yet, it is striking that very few—if any—field studies have inquired
about whether free-living mammalian prey integrate multiple forms of sensory
information when responding to predation risk. Empirical tests examining
how prey integrate multiple predator cues in ecological contexts are clearly
warranted [13,14].

Theoretically, natural selection should favour the ability for prey animals to
optimize decisions under the risk of predation [15,16]. Although individuals
are expected to discriminate among various risky options based on multimodal
information [17–19], we know comparatively little about vertebrate prey
responses to non-redundant predator cues [3,14]. Non-redundant signals outside
of the predator–prey context should theoretically mediate one of several different
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responses. Theymay (i) independently trigger two ormore dis-
tinct responses (e.g. spiders respond differently to acoustic
versus chemical mating signals [20]), (ii) modulate each other
(e.g. tadpoles beg the most when exposed to visual, chemical
and tactile cues together [21]), (iii) combine to produce an
entirely new response (e.g. domestic chicks were only strongly
averse to yellow/red foods when paired with pyrazine; pyra-
zine is not inherently aversive [22]), or (iv) override each
other via signal dominance (e.g. dogs signal play rather than
aggression by combining a visual bow with growling [23]).
A few studies have also documented the integration of conflict-
ing or complementary predator cues used by prey to assess
predation risk [24]; these reveal signal dominance (e.g. visual
cues dominant to acoustic cues [25]) and enhancement (e.g.
acoustic and visual cues combine to promote stronger
responses [26]). Moreover, in a rapidly changing world, there
is growing interest in understanding the extent to which
human presence alters risk perception by wildlife, particularly
by small mammalian prey [27–31].

Here we applied a psychophysics approach as part
of a multi-year field experiment to gain insights into the
cognitive integration of indirect cues from predators by mam-
malian prey [13,32,33]. We focused on the free-living
California ground squirrel (Otospermophilus beecheyi), an ende-
mic in California grasslands that is a major prey species
for northern Pacific rattlesnakes (Crotalus oreganus), birds of
prey and coyotes (Canis latrans) [34]. California ground squirrels
represent a textbook example of a species that produces a suite
of multimodal, anti-predator signals—alarm calls (acoustic),
tail-flagging (visual) and infrared heat (electromagnetic)
[35–39]. They also respond to conspecific alarm calls [40–42].
Although there is some evidence from separate studies that
the intensity of threat responses varies between rattlesnake
cues [43,44], we lack an understanding of whether ground
squirrels integratemultiple, non-redundant indirect cues.More-
over, information on ground squirrel responses to coyote cues is
generally lacking.

Environmental constraints should theoretically influence
the degree to which different sensory modalities (e.g. acoustic
versus olfactory) influence risk-sensitive behaviours in nature
[45]. Coyotes, for example, produce several major cues that
may separately, or together, inform risk-sensitive decisions by
ground squirrels. This information may or may not be redun-
dant, depending upon its meaning to receivers. First, as the
most vocalmammal inNorthAmerica, coyotes use calls to com-
municate their motivational state to conspecifics [46] and
coordinate group activities (e.g. hunting of large prey [47],
territory defence [46]). Because coyotes rarely vocalize when
stalking rodent prey [48], ground squirrels may perceive calls
as safety cues (i.e. squirrels are not being actively stalked as
prey) [49]. Conversely, any predator cue may communicate
danger and thereby induce threat-sensitive responses; indeed,
marmots [50] and skunks [51] exhibit heightened responses to
coyote vocalizations despite only being hunted when coyotes
are quiet. Second, coyotes regularly deposit urine on the land-
scape to advertise their presence to conspecifics [52,53], but
this chemical information is also available to prey and can
persist after a coyote has left an area [54–56]. Because rodents
are exquisitely sensitive to predator urine from a young age
[57–59], coyote urine may induce investigation followed by
avoidance (across the lifespan). However, indirect predator
cues (e.g. olfactory or acoustic cues conveying predator pres-
ence without visual confirmation) may also be particularly
challenging because they require prey to infer risk in the
absence of observing a predator [60]. Finally, human presence
may increase [61] or decrease [62] the perceived risk of preda-
tion. Our major goal is therefore to assess the responses of
ground squirrels to indirect cues from two study sites that
differ in human and domestic dog (Canis lupus familiaris)
activity. Studying coyote calls in combination with urine (in
the absence of visual cues) offers a salient opportunity to
inquire about multimodal risk assessment of indirect predator
cues and their potentially interactive effects on prey responses
between landscapes that vary in human presence.

In this study, we examined the effects of non-redundant,
indirect predator cues on space use (in a testing arena) and
behavioural reactivity (e.g. vigilance, fleeing, investigating).
We presented ground squirrel subjects with stimuli from
one or two sensory modalities: chemical and/or acoustic.
Studies have focused on each cue in isolation, but few have
considered their relative effects in nature or these effects in
the context of human presence. First, we examined whether
squirrels integrate indirect predator cues (i.e. whether sub-
jects’ responses reflect the integration of non-redundant
information). Second, we investigated the extent to which
individuals experiencing divergent levels of human and
dog activity differed in their responses to the predator cues.
At our disturbed site, domestic dogs directly kill, chase and
disturb squirrels whereas dogs rarely visit the relatively pris-
tine site [63] (see Methods for details). Because mammalian
prey often respond similarly to odours from domestic dogs
and wild canids [64,65], we expected squirrels at the dis-
turbed site to be more reactive to coyote cues than those
residing at the pristine site (i.e. human, dog and predator
cues combine to trigger heightened risk sensitivity) [66,67].
Repeated exposure to canid urine (i.e. urine produced by
domestic dogs) could also promote habituation [68], thus
reducing responses to coyote urine at the disturbed site.
Third, we investigated the effects of age class and sex on
the behavioural responses to various stimuli. Because many
animals, including California ground squirrels [69,70], learn
to mount appropriate anti-predator responses across onto-
geny [71–73], we predicted adults would be more reactive
to predator cues than juveniles. We also expected negligible
sex differences because the study was conducted outside of
the breeding season. Although lactating mothers are most
reactive to predation risk [74] and males tend to flee earlier
than females when approached by humans [75], both sexes
are equally vigilant at our study sites during the summer
months [69]. Finally, we also asked if individual responses
were consistent (repeatable) across tests [76].
2. Methods
(a) Field site and study populations
This field experiment was part of a long-term study of free-living
California ground squirrels at Briones Regional Park in Contra
Costa County, CA, USA (latitude: 37.93 north, longitude: 122.13
west, elevation: 319 m.a.m.s.l. [69]). Since 2013, we have moni-
tored marked individuals at two distinct locations. The study
sites are roughly 9500 m2 each and vary in their degree of dis-
turbances by human foot traffic and domestic dogs as well as
the level of vegetation management [69,77]. Animals at the dis-
turbed site are generally less reactive to humans, have higher
glucocorticoid levels, and are in poorer body condition than
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Figure 1. Behavioural testing arena for assessing integrated fear responses of California ground squirrels in field conditions. For each test, we presented a choice of
two options: no stimulus (speaker off and empty cup, designated by grey shading) versus stimulus side (yellow) of either coyote cue(s) (urine ± calls) or the control
(crow call + ammonia). Grey and yellow shading is only to visualize the set-up; the apparatus floor was simply white with black lines.

Table 1. Experimental treatments for examining sensory integration.

mode treatment modalities stimuli

multimodal predator auditory, olfactory coyote call,

coyote urine

control auditory, olfactory crow call,

ammonia

unimodal predator olfactory coyote urine

predator auditory coyote call

Table 2. Principal components analysis results for ethogram.

coefficients PC1 PC2

resting −0.97 0.20

stimulus investigation 0.80 0.37

walking 0.74 −0.63
fleeing 0.64 −0.64
non-stimulus investigation 0.57 0.59

looking (vigilance) 0.48 −0.27
eigenvalues 3.22 1.03

s.d. 1.80 1.02

proportion of variance 0.54 0.17
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those residing at the relatively pristine site [69,77]. Moreover,
ground squirrels at our study sites have consistent individual
differences in behaviour across time and contexts [36,63,75,78].

(b) Live-trapping of free-living squirrels
We live-trapped and released ground squirrels using Tomahawk
Live-Traps (Hazlehurst, WI, USA) from late May through July of
each summer, the period over which juveniles and adults are
most active aboveground [78,79]. We covered traps with card-
board for shade and checked at intervals of less than 30 min.
Upon first capture and using a cone-shaped handling bag [80],
we marked each individual with a Monel metal ear tag (National
Band and Tag Co., Newport, KY, USA), fur mark (Nyanzol cattle
dye, Greenville Colorants, NJ, USA) and passive integrated trans-
ponder tag (Biomark, Inc., Boise, ID, USA). Juveniles were
weaned young of the year (60–365 days of age) and adults
were older than 365 days [81]; age categories were assigned
with high accuracy [78].

(c) Field experiments
We used a mobile testing arena modelled after that designed for
the yellow-bellied marmot (Marmota flaviventris), a large free-
living ground squirrel (figure 1; for details, see [82,83]). Briefly,
our testing arena was a Midwest Life Stages Folding Metal
Dog Crate (92 cm × 62 cm × 69 cm), reinforced internally with
0.15 cm thick white Poly Wall; this limited disturbance by exter-
nal stimuli while allowing for sufficient ambient sunlight into the
arena. We ran behavioural assays on subjects between 8.00 and
16.00 in shady areas hidden from human activity to avoid
direct sunlight (heat stress) and reduce anthropic noise during
the trials.

Over two summers, each individual received up to four of
the conditions (predator odour, predator sound, predator
odour + sound, control; tables 1 and 2); some individuals were
available for fewer than four trials because of mortality, disper-
sal, or low trappability. Each 10 min trial was recorded from
the top of the arena with a GoPro Hero 3. We used a grid pattern
on the floor of the apparatus to aid in quantifying space use
(figure 1). We placed two small plastic boxes (25 cm × 15 cm ×
13 cm, figure 1, each with 25 different 2 cm × 2 cm holes along
the side to promote airflow) on either side of the testing arena.
Each stimulus was hidden under one of the boxes within a
single trial to offer a choice: stimulus (predator or control) on
one side of the testing arena versus no stimulus on the other
side of the testing arena. We randomized the side of the box con-
taining the stimulus to avoid potential spatial confounds and
thoroughly wiped down the testing arena with a 70% vinegar
solution between trials to prevent the accumulation of odours.
Subjects were live-captured, tested and released at the site of cap-
ture across multiple days. Individuals were tested no more than
once each day, never on their first day of capture, and, in some
cases, in two different summers until receiving up to four treat-
ments. We randomized treatment order for subjects. No subject
received the same treatment more than once.
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Olfactory and/or auditory cues were hidden under the plastic
box inside the arena (figure 1). The predator odour treatment con-
sisted of a cotton ball saturated with coyote urine (PredatorPee
Brand Product from Maine Outdoor Solutions, LLC) in a small
plastic cup.Audio recordings of coyote (e.g. growls, yips and bark-
ing) and control calls were played at approximately 60 or more
decibels (dB) 50 cm from the centre of the testing arena and for
the duration of predator auditory tests from a DG530 Portable
Mini Super Bass Portable Wireless Bluetooth Speaker FM.

We used Decibel X, a noise meter app to measure sound
pressure level (SPL) in dB(A) at a distance of 50 cm from the
speaker (i.e. the distance of a subject in the middle of the testing
arena to the speaker) with the reference quantity of 20 µP. Because
an external calibrated sound meter was unavailable as a reference,
we relied upon the app’s internal settings and did not adjust
the trimming values in the field. This approach likely reduced
the precision and accuracy of target SPLs of the playbacks. Because
A-weighted decibels reflect the sensitivity of the human ear, it is
possible they may not fully represent the intensity at which
ground squirrels perceived the playback. For context, ground
squirrels typically hear pitches from 16 to 26 000 Hz, a range that
is similar but not identical to that of humans [84].

Playback stimuli were broadcast at a low intensity (60 dB
measured at 50 cm from speaker) to represent a distant coyote
(or control) call in the study area. These SPLs are comparable
with those used to elicit anti-predator responses by ground squir-
rels in other studies. For example, the closely related yellow-bellied
marmot was played stimuli at 92–93 dB (measured 10 cm from
the speaker) in a field study [85]. Based on the inverse square
law for a point source at reported distances (subject 10–15 m
from the speaker), this is equivalent to marmots experiencing
SPLs at 49–52 dB at 50 cm from the speaker [85]. Others have
played predator sounds of 55–75 dB to California ground squirrels
at distances of 40–95 cm [86] and a variety of stimuli at 60–88 dB to
Belding’s ground squirrels (Spermophilus beldingi) at a distance of
2 m [72]; measurement distances for SPLs were not explicitly
reported for either study, so we cannot infer the equivalent SPLs
experienced by subjects at 50 cm from a speaker.

Because coyotes vocalize at a maximum of 105 dB (recorded
at 1 m away) [46], a squirrel played a vocalization from 50 cm
away at SPL of 60 dB should perceive the coyote to be vocalizing
at a maximum distance of 177 m away (from the subject). This is
equivalent to a coyote vocalizing at the edge of our study area
(i.e. the longest distance from one side to the other [69]). We
also selected this modest volume given the short distance of
squirrels from speakers and to avoid possible eavesdropping
from non-target squirrels being processed at the nearby trapping
station. Coyote vocalizations played in a pilot study at 60 dB
(measured at 50 cm) outside of the testing arena were audible
to the human ear and the squirrels in the area.

Our control consisted of an olfactory stimulus (a cotton ball
soaked in ammonia placed in a small cup) and an acoustic stimu-
lus (recordings of American crows; Corvus brachyrhynchos, a
common, non-threatening species), both of which were hidden
under the plastic box. Ammonia is a harmless chemical stimulus
often used as a control in studies aimed at testing the behavioural
responses of prey [55]. We retrieved audio files from the Macau-
lay Library at the Cornell Lab of Ornithology and randomly
played a unique sound file for each trial.
(d) Quantifying behavioural responses
Each video was scored in JWatcher version 1.0 [87] to quantify
space use and behavioural responses. First, following [88], we
tracked the position of each subject’s snout (regardless of the pos-
ition of its tail) to measure where each subject’s body was located
in the arena and recorded whether they were on the stimulus side
(12 open squares + test box), in the middle of the arena (12 open
squares), or on the non-stimulus side (12 open squares + test box;
figure 1). Second, we scored each behaviour into one of six
mutually exclusive categories: (1) resting (stationary posture,
includes chewing seeds from cheek pouches or autogrooming
when sitting or lying down), (2) looking (head moving in the air
from side to side or up and down without flexing of nostrils), (3)
walking (animal transverses across gridlines on the floor of the
arena while at least two paws were in contact with the floor at
all times), (4) non-stimuli investigation (subject sniffing side of
the enclosure, middle of the arena or near the non-stimuli test
box), (5) stimuli-box investigation (sniffing at or head oriented
towards stimuli in a state of arousal often while moving tail from
side to side in a sweeping motion), and (6) fleeing (actively climb-
ing on, biting at and/or scratching at enclosurewith teeth or paws,
presumably in an attempt to escape from the testing arena). Videos
were scored by two observers and mean values were analysed.
Videos were muted and scorers were blind to the predator cues
presented (i.e. olfactory versus auditory versus multimodal) in
each trial. Videos with interobserver reliabilities of less than 85%
were rescored to yield a mean ± s.e. interobserver reliability of
96%± 0.03 (n = 231 trials).
(e) Statistical analysis
We used R version 4.0.3 [89] for all statistical analyses. We applied
a principal component analysis (PCA) to reduce the dimensional-
ity of correlated behaviours in FactoMineR [90] (table 1). The first
principal component (PC1) explained more than half of the vari-
ation (54%; eigenvalue of 3.22) and correlated positively with
behavioural arousal (e.g. investigating the stimulus box (0.80),
walking (0.74), fleeing (0.64), non-stimulus investigation (0.57)
and looking (0.48)) but negatively with resting (−0.97). The
second principal component (PC2) explained an additional 17%
of the variation, but the values of behaviours loading on PC2
were generally in the opposite direction (of those loadings for
PC1) with one exception. Investigation of the non-stimulus boxes
loaded positively on PC1 (0.57) and PC2 (0.59). Given that com-
ponents with eigenvalues near one generally have limited
explanatory value (i.e. eigenvalue PC2 was 1.03) [91,92], sub-
sequent analyses only focused on explaining PC1 (hereafter,
‘behavioural reactivity’).

We ran four generalized mixed effect models (GLMMs). First,
we fitted a single GLMM with a binomial distribution in lme4
[93] to examine the subject’s preference for (versus aversion to)
the stimulus side of the arena. Given that a subject with no pre-
ference should theoretically split its time equally among the three
spatial sections of the arena (no stimulus side, middle or stimulus
side), we deemed a squirrel to prefer the stimulus side if it allo-
cated more than two-thirds of its time to that side during a trial.
We used this threshold approach for the choice test rather than
a proportion of time because the latter failed to meet model
assumptions despite transformations. Second, we evaluated the
factors explaining PC1 (behavioural reactivity) using a Gaussian
distribution. To help describe two behaviours of interest, we also
ran two additional models with the proportion of time (i) inves-
tigating the stimulus box and (ii) vigilant as outcome variables
(see electronic supplementary material). For all models, we
entered the fixed effects of a subject’s characteristics (age cat-
egory ( juvenile/adult) and sex (male/female) as well as their
interaction), trial number (1, 2, 3 or 4) to account for habituation
or sensitization, and treatment (coyote calls, coyote urine, both
stimuli or control) as predictor variables.

We also included the random effects of ‘squirrel identity’ in
each model to account for repeated measures within our dataset
and to examine inter-individual differences in responses. We
used likelihood ratio tests (LRTs) to assess if the random effect of
identity improved each model’s fit. We extracted the various com-
ponents using the linear mixed model method to report



Table 3. Factors predicting behavioural responses of ground squirrels. Results are from GLMM models and significant terms are shown in bold. For categorical
fixed effects, the level of the variable being compared is shown in parentheses (e.g. for ‘site’, animals from the pristine site were compared to those from the
disturbed site; a positive estimate indicates that individuals at the pristine site were more likely to prefer the stimulus side than those at the disturbed site).
Significant terms are shown in bold. Non-significant interaction terms for each model, respectively, also included: olfactory × site (1.47 ± 1.05, t = 1.40, p =
0.162; −0.35 ± 0.66, t =−0.529, p = 0.597), auditory × site (0.73 ± 1.01, t = 0.73, p = 0.466; 0.76 ± 0.63, t = 1.203, p = 0.230), multimodal × site (1.45 ±
0.92, t = 1.58, p = 0.115; −0.39 ± 0.59, t =−0.661, p = 0.509).

fixed effect estimate ± s.e. t-value p-value

(a) preference for stimulus side

intercept −1.46 ± 0.47 −3.08 0.002

olfactory predator cue (control) −1.11 ± 0.50 −2.23 0.026

auditory predator cue (control) −0.84 ± 0.48 −1.72 0.084

auditory + olfactory (control) −0.94 ± 0.43 −2.17 0.030

site (pristine) 0.94 ± 0.39 2.45 0.015

age category ( juvenile) 0.44 ± 0.39 1.13 0.260

sex (male) 0.41 ± 0.35 1.17 0.242

random effect X2 p-value

identity 0.25 0.617

(b) behavioural reactivity (PC1)

intercept 1.51 ± 0.41 3.70 0.0003

trial order −0.60 ± 0.11 −5.46 <0.009

olfactory predator cue (control) 0.71 ± 0.27 2.63 0.009

auditory predator cue (control) 0.31 ± 0.28 1.09 0.276

auditory + olfactory (control) 0.24 ± 0.25 0.98 0.329

site (pristine) −0.41 ± 0.29 −1.42 0.158

age category ( juvenile) −0.88 ± 0.37 −2.42 0.016

sex (male) −0.55 ± 0.41 −1.35 0.180

age × sex 0.62 ± 0.51 1.22 0.226

random effect X2 p-value

identity 15.71 <0.0001
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repeatabilities, defined as the intraclass correlation coefficient, to
measure the proportion of total variance explained by among
(versus within) individual differences using the rptR package
[94,95].
3. Results
Our final dataset of 231 trials on 114 unique free-living
ground squirrels (n = 59 females and 55 males) across the
four conditions (n = 45 calls, 50 urine, 70 calls + urine, 66 con-
trol) at the disturbed (n = 169) and pristine (n = 63) sites. On
average, subjects were tested over 41 ± 10 (mean ± s.e.) days,
but individuals were tested over as many as 370 days.
At the time of testing, subjects included 76 juvenile females,
74 juvenile males, 43 adult females and 38 adult males.

In terms of space use, individuals—particularly those from
the disturbed site—consistently avoided spending time near
coyote urine, regardless of whether urine was paired with a
coyote call. That is, individuals were significantly more
averse to the coyote urine alone (t =−2.23, p = 0.026) or com-
bined with coyote calls (t =−2.17, p = 0.030; table 3a and
figure 2a) versus the multimodal control; their responses
were comparable for urine alone versus urine combined with
coyote calls (t =−0.17, p = 0.89). Squirrels did not significantly
avoid coyote calls more than the control (t =−1.72, p = 0.084),
but calls alone elicited similar space to urine alone (t =−0.13
p = 0.90) or paired with calls (t =−0.38, p = 0.70).

Stimuli avoidance varied between sites. Individuals from
the disturbed site were significantly more averse to the stimu-
lus side of the testing arena than those from the pristine site
(t = 2.45, p = 0.015; figure 3a). These patterns persisted regard-
less of the subject’s sex (male: t = 1.17, p = 0.242), age category
( juvenile: t = 1.13, p = 0.260), or identity (χ2 = 0.25, p = 0.617).
Spatial preferences were not repeatable across treatments
(repeatability ± s.e.: 0.06 ± 0.01; 95% confidence intervals:
0.00 to 0.22, p = 0.21). The space use model failed to converge
when ‘trial order’ (0.34 ± 0.20, t = 1.70; p = 0.089) or ‘age × sex’
(0.85 ± 0.80, t = 1.07; p = 0.287) were included, so both terms
were removed.

When looking at behavioural reactivity (e.g. fleeing, inves-
tigating, vigilance), PC1 was higher for individuals exposed to
predator cues of any type compared with the control, but only
exposure to urine alone triggered a statistically significant
increase in behavioural reactivity compared with the control
(t = 2.63, p < 0.009; table 3b and figure 2b). By contrast, exposure
to coyote calls in the presence (t = 0.98, p = 0.329) or the absence
(t = 1.09, p = 0.276) of coyote urine failed to significantly
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increase behavioural reactivity compared to the control. Behav-
ioural reactivity to urine alonewas also statistically higher than
for calls alone (t = 2.39, p = 0.019), but responses to calls or
urine alone were not statistically different from the predator
cues combined (t≤ 1.57, p≥ 0.120). Moreover, adults were sig-
nificantly more reactive during behavioural assays than
juveniles (t =−2.42, p = 0.016; figure 3b). Finally, although indi-
viduals’ reactivity significantly declined across repeated trials
(t =−5.46, p < 0.009), some individuals were significantly
more reactive than others across testing situations (χ2 = 15.7,
p < 0.0001; figure 4). Specifically, an individual’s reactivity
(PC1) across trials (treatments) was significantly repeatable
(repeatability ± s.e.= 0.25 ± 0.08; 95% credible intervals:
0.09–0.41, p < 0.001), documenting consistent individual
differences in the behavioural reactivity.

On average, squirrels allocated around 15% of each trial
to investigating the stimulus box (mean ± s.e.: 0.15 ± 0.01,
range: 0 to 0.81), but adults investigated the stimuli for a
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significantly greater proportion of time than juveniles
(t =−2.97, p = 0.003; electronic supplementary material, table
S1a). Although squirrels investigated coyote urine (mean ±
s.e. proportion of time: 0.16 ± 0.02) for significantly longer
than coyote calls (0.11 ± 0.03; t = 2.03, p = 0.045), there was
no difference in the proportion of time they investigated
urine alone versus multimodal predator cues (0.18 ± 0.05;
t =−0.828, p = 0.409). Squirrels investigated multimodal pred-
ator cues for longer than calls alone (t = 2.89, p = 0.005) or the
control (0.12 ± 0.02; t = 2.01, p = 0.041).

In general, squirrels only allocated 3% of each trial to
vigilance (mean ± s.e.: 0.03 ± 0.01 proportion of time; range:
0–0.35) but were significantly more vigilant for coyote calls
alone versus the multimodal control (t = 2.20, p = 0.029; elec-
tronic supplementary material, table S1b). The proportion of
time vigilant was statistically similar for coyote urine (0.04
± 0.01) and calls alone (0.05 ± 0.01; t =−1.60, p = 0.873), but
subjects spent more looking in trials with coyote urine only
or calls only versus those with multimodal predator cues
(0.02 ± 0.01: t≥ 2.46, p≤ 0.015).
4. Discussion
(a) Sensory integration of non-redundant multimodal

cues
Overall, the experiments revealed divergent patterns of signal
dominance to non-redundant information from two indirect
cues—coyote calls and urine. Ground squirrels avoided
coyote urine (irrespective of calls) but only increased their reac-
tivity (e.g. vigilance, fleeing, investigating) when exposed to
‘quiet coyotes’ (urine without calls). These findings are gener-
ally consistent with sensory integration theory [4,13,14],
supporting the prediction that animals consider information
from multiple sensory channels in risky situations [19,96,97].

Physiological constraints dictate that coyotes must urinate
within their home range—regardless of their motivational
state—whereas calls offer specific information about predator
intent because stalking predators rarely vocalize when hunting
[51,98]. Thus, coyote calls could represent safety—rather than
danger—cues togroundsquirrels, contributing to thegrowing lit-
erature suggesting that prey optimize decisions by avoiding
danger and seeking safety [99]. It is alsopossible that squirrels dis-
counted the danger of calls because they could not see nearby
coyotes. That is, after integrating nearby predator odour and
calls, squirrelsmaydeemthis combined informationasunreliable
or conflicting in the absence of visual confirmation of a coyote.
This second explanation was only partially supported by the
data; squirrels investigated the stimulus for longer but were gen-
erally less vigilant when exposed to multimodal predators cues
(thanurineorcalls alone). Regardless, thenon-additive responses
to indirect cues—in the absence of visual information—are con-
sistent with sensory integration theory. More broadly, our
experiment offers insights into the growing appreciation that
multiple, non-redundant predator cues from the same species
may increase accuracy in fear responses.

Our study confirms that free-living mammals are able to
reconcile non-redundant information from different sensory
modalities and highlights the need to consider howmultimodal
cues shape the evolution of integrated fear responses. Whereas
the combination of two disparate sources of information (dog
versus human) has previously been shown to amplify fear
responses [100], our current findings extend our knowledge
by suggesting that non-redundant cues from the same predator
species may also act to promote accurate decisions through
signal dominance. Taken together, we contribute to an
understanding of how animals make accurate risk-sensitive
decisions through the integration of multimodal information.
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(b) Variation in responses between pristine and
disturbed sites

Individuals living at the pristine site spent more time near
stimuli than those residing at the disturbed site. We interpret
this behavioural response to mean that individuals at the dis-
turbed site are most risk-averse to coyote cues. Interestingly,
our findings are in direct contrast to the prediction that
increased exposure to humans (e.g. tourism) may increase
prey vulnerability to predators by reducing their reactivity
to natural predators [61]. This could be explained by site-
level differences in exposure to predator cues. Although
coyotes are fairly cryptic and, thus, tracking their relative
abundance at our two sites is challenging, other studies
show that coyotes tend to avoid areas frequented by
humans and their dogs [101]. Thus, one might expect encoun-
ters by squirrels with coyotes to be less common at the
disturbed than at the pristine site [77]. Moreover, subjects
may integrate information from increased ambient anthropic
noise with experimental stimuli since the disturbed site is
near a parking lot. Ground squirrels do compensate
for anthropic noise (e.g. wind turbines) by increasing their
anti-predator behaviour at other sites in California [41].
Similarly, European mink (Mustela lutreola) increase risk
aversion when confronted with anthropogenic acoustic
(e.g. road traffic noise, human voices) and olfactory (e.g.
dog odours) cues [100]. Thus, in a changing world, prey
must often integrate information from multiple threats to
make adaptive decisions.

(c) Ontogeny of risk aversion to predator cues
In our study, adults were more behaviourally reactive to
predator cues than were juveniles, suggesting risk
sensitivity increases with experience. Mammalian prey are
naturally averse to predator-derived odours, especially
urine [57,58]. Rodents in particular are exquisitely sensitive
to the sulfurous metabolites, compounds that reflect the
amount of meat in a coyote’s diet [58], and prey species
widely use chemical cues to assess risk, often from a young
age [102–104]. Specifically, olfactory sensory neurons and
chemosensory receptors allow rodents to detect predator
odours from as early as 12 days old [59,105]. European
rabbits (Oryctolagus cuniculus) also recognize fox (Vulpes
vulpes) feces without prior experience [106]. Despite juvenile
competency in detecting predator odours, our finding that
adults were more reactive than juveniles to predator cues is
consistent with earlier research in California ground squirrels
[69,70] and other taxa [107]; adults are generally most reactive
to threats. Similarly, adult meerkats (Suricata suricatta) are
more likely to alarm call than juveniles when confronted
with threats [71]. Ontogenetic differences may be attributed
to increased experience with predators [108], stage-specific
danger (e.g. offspring vulnerability) [86] and/or increased
survival by reactive juveniles [107,109]. These patterns gener-
ally highlight the need to consider how an individual’s
experience interacts with integrated responses to threats and
the associated fitness consequences of integrated responses to
threats across the lifespan.
(d) Consistent individual differences in behavioural
reactivity

Another major finding of our study was that individuals
were consistent in their behavioural reactivity—but not in
their time spent near stimuli—across treatments. This finding
adds to our growing understanding of the consistent individ-
ual differences in California ground squirrels [36,63,75,78]
and other animals [76,110,111]. More broadly, given that indi-
viduals residing at the human-impacted site were also
consistently most reactive to predator cues, future studies
should investigate the extent to which fear of predators gen-
eralizes to fearfulness of other dangers, including humans
[112]. These modes of inquiry should offer key insights into
how animals cope with multiple sources of information in a
changing world.
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