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1  | INTRODUC TION

Since the time of Aristotle, humans have been observing the natural 
world from a distance. Such direct field observations are the histor-
ical basis for the now well-established field of behavioural ecology. 
Nearly 50 years ago, Altmann (1974) established a ‘Rosetta stone’ for 
the observational study of behaviour. In her paper, she outlined the 
most common methods used by behavioural ecologists and laid out 
the strengths and pitfalls of each. Altmann's paper has been the cor-
nerstone of behavioural ecology research for the past 4.5 decades, 
as is evident by its nearly 16,000 citations (Google Scholar, 2020). 

In recent years, rapid advances in automated sensing technologies 
have transformed how information about animal behaviour is col-
lected. Examples of innovations include the use of monitoring sys-
tems and animal-attached devices (bio-loggers) to track animals' 
movements and social behaviour. Clearly, the availability of improved 
research methods, tools for obtaining data and the ability to relate 
observations to ecological and physiological processes have already 
transformed the field (Altmann & Altmann, 2003). On the 45-year 
anniversary of Altmann's (1974) seminal paper on the observational 
methods for the study of behaviour, the time is ripe for animal ecolo-
gists to reflect on the utility and integration of classic observational 
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Abstract
1. In the 4.5 decades since Altmann (1974) published her seminal paper on the methods  

for the observational study of behaviour, automated detection and analysis of so-
cial interaction networks have fundamentally transformed the ways that ecolo-
gists study social behaviour.

2. Methodological developments for collecting data remotely on social behaviour involve 
indirect inference of associations, direct recordings of interactions and machine vision.

3. These recent technological advances are improving the scale and resolution with which 
we can dissect interactions among animals. They are also revealing new intricacies of 
animal social interactions at spatial and temporal resolutions as well as in ecological 
contexts that have been hidden from humans, making the unwatchable seeable.

4. We first outline how these technological applications are permitting researchers 
to collect exquisitely detailed information with little observer bias. We further 
recognize new emerging challenges from these new reality-mining approaches.

5. While technological advances in automating data collection and its analysis are 
moving at an unprecedented rate, we urge ecologists to thoughtfully combine these 
new tools with classic behavioural and ecological monitoring methods to place our 
understanding of animal social networks within fundamental biological contexts.
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methods, the use of new technologies and the incorporation of rap-
idly advancing analytical and computational tools.

Automated tracking offers opportunities to remotely quantify 
and study behaviour at scales that have not been possible previ-
ously (Dell et al., 2014). Bio-logging is broadly defined as the track-
ing of individual animals by attaching or implanting equipment 
to collect information about their identity, location, behaviour 
or physiology. These loggers include global positioning systems, 
accelerometers, video cameras and telemetry tags. The number 
and types of such bio-loggers have exploded in recent years (Dell 
et al., 2014; Williams et al., 2019; Wilmers et al., 2015). Specifically, 
these new tools allow monitoring of an animal's precise reac-
tion to both its social and ecological environment (Amlaner & 
Macdonald, 1980; Evans et al., 2013; Krause et al., 2013; Ropert-
Coudert & Wilson, 2005; Williams et al., 2019). These tools can 
improve the information available about the ecological drivers 
of individual differences in social decision-making, social inter-
actions and emergent social structures. These tools have mainly 
been used to study population dynamics, movement ecology 
and conservation biology (Aikens et al., 2017; Block et al., 2011; 
Jacoby & Freeman, 2016; Merkle et al., 2016; Moll et al., 2007; 
Nathan et al., 2008; Patterson et al., 2008; Ropert-Coudert & 
Wilson, 2005). Recently, interest has increased in using technology 

to understand how animals construct and respond to their dynamic 
social environments (Figures 1 and 2).

Social network theory and machine learning have been instru-
mental in making connections between bio-logging technology and 
the study of social behaviour. Analysing the abundant data obtained 
from automated bio-logging of animals' behaviour requires dedicated 
analytic tools. Machine learning algorithms are starting to be em-
ployed to infer behaviour from movement data, including large move-
ments across landscapes (Bastille-Rousseau et al., 2018), fine-motor 
movements measured with accelerometers (Hammond et al., 2016; 
Nathan et al., 2012; Williams et al., 2017) and a combination of both 
(Bom et al., 2014). Social behaviour can be inferred from remote-sens-
ing tools, for example by inferring interactions through spatial and 
temporal proximity (Psorakis et al., 2012; Rutz et al., 2012; Ryder 
et al., 2012; Weihong et al., 2005). In some cases, the type of social 
interaction can be accurately inferred because of its duration and loca-
tion. For example, when animals interact at a food patch, they can be 
inferred as co-feeding (Aplin et al., 2012; Chen et al., 2015; Tambling 
& Belton, 2009). Furthermore, direct food sharing can be quantified 
and detected automatically in some systems (Gernat et al., 2018; 
Greenwald et al., 2015). If the duration of an interaction between male 
and female tagged individuals is long, mating interactions can be in-
ferred (Handcock et al., 2009; Hong et al., 2015; Psorakis et al., 2012). 

F I G U R E  1   High-throughput technologies are being used to monitor social phenomena, permitting for the observation of (a) 1.2 million 
social interactions among honeybees Apis mellifera within a single study (Gernat et al., 2018) [Copyright © 2018. Published by PNAS. This 
open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND)],  
(b) previously hidden walking trajectories of red harvester ants Pogonomyrmex barbatus inside nests (Pinter-Wollman et al., 2011) 
(Reproduced with permission from the Royal Society of London), (c) sensory fields of fishes in moving schools Notemigonus crysoleucas 
(Rosenthal et al., 2015) (Published by PNAS. Reproduced with permission from Iain Couzin), and movements of mobile animals fitted with 
high-resolution GPS collars, including (d) baboons Papio anubis (Strandburg-Peshkin et al., 2015) (Published in Science. Reprinted with 
permission from AAA) and (e) sleepy lizards Tiliqua rugosa (Photo with permission by Orr Spiegel)
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In other cases, spatiotemporal co-occurrences offer insights about the 
timing and directionality of dyadic interactions to reveal leadership in 
mobile primates (Strandburg-Peshkin et al., 2015) or sharks (Jacoby 
et al., 2016).

Social network analysis has been instrumental in analysing social 
data for the past decade (Pinter-Wollman et al., 2014; Sih et al., 2009; 
Webber & Vander Wal, 2019; Wey et al., 2008), including data ob-
tained through remote sensing technology. Network analysis takes 
into consideration the entire social system rather than focusing on 
pairwise interactions as independent social relationships within a 
group, revealing group-level phenomena (Flack et al., 2006; Smith 
et al., 2010). This analysis can only be achieved with modern com-
putational tools and hardware, which were unavailable 4.5 decades 
ago. Graduate students did not have personal computers, figures in 
papers were often hand-drawn, and one had to look up critical val-
ues in tables to make statistical inferences. The revolutionary tech-
nological advances since Altmann's, 1974 paper have allowed us to 
pursue with increasing tenacity the same basic interests in animal 
social behaviour that motivated Altmann's fundamental work.

Here we explore ways in which the ‘bio-logging revolution’ 
(Williams et al., 2019) combined with advances in social network 
theory offer underexploited opportunities for behavioural field 

studies. In doing so, we identify biological questions for future re-
search as well as potential challenges associated with integrating 
these technological advances into our research programs. Our goal 
is to provide a guide for behavioural ecologists of the best practices 
for quantifying and analysing social behaviour, particularly with re-
spect to the burgeoning tracking tools and social network analysis 
methods.

2  | AN AUTOMATED TOOLKIT FOR 
STUDYING SOCIAL BEHAVIOUR

Reality mining involves collecting and analysing social behaviour data 
by machines. Common tools include bio-logging and biotelemetry 
technologies for mapping animal associations (Hughey et al., 2018; 
Krause et al., 2013). We briefly outline these new methods for col-
lecting data, particularly in the context of social behaviour. We then 
evaluate the extent to which these methods are fundamentally dif-
ferent from those used in classical observational studies of behaviour 
in terms of their spatiotemporal scales and specificity in detecting 
behavioural interactions. Methods for collecting data remotely on 
social behaviour involve three major forms of detection: (a) indirect 

F I G U R E  2   Integration of naturalistic observations of behaviour, automated sensing and social network analysis is uncovering previously 
hidden phenomena. (a) RFID feeders track the diffusion of novel foraging techniques across social networks to document the persistence of 
culture via conformity in great tits Parus major (Aplin et al., 2015) (Published in Nature. Redrawn from original images with permission from  
Lucy Aplin). (b) Accelerometer tags reveal fine-scale patterns of leadership in lemon sharks Negaprion brevirostris as the sharks move behind 
coastal vegetation, which obscures direct observation (Wilson et al., 2015) (Reproduced with permission from Oxford University Press).  
(c) RFID readers at roosting sites reveal long-term social relationships of Bechstein's bats Myotis bechsteinii within their highly flexible social 
groups (Kerth et al., 2011) (Reproduced with permission from the Royal Society of London). (d) RFID readers combined with direct observations 
reveal that social network positions of individuals are consistent between two ecological contexts: aboveground and belowground in California 
ground squirrels Otospermophilus beecheyi (Smith et al., 2018) (Reproduced with permission from the Royal Society of London) 
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inference of associations, (b) direct recordings of interactions and  
(c) machine vision, defined as automated inspection and analysis of 
images (Figure 1).

Animal encounters may be detected indirectly from co-locations 
of animals based on the recording of spatiotemporal animal move-
ments from animal-borne tags (Krause et al., 2013). Importantly, 
these methods infer social associations from the spatial and tem-
poral proximity of individuals. Because animal-borne tags provide 
data remotely (via VHF radio, ultrasonic acoustic telemetry, trans-
mission of GPS data via the cellular network, etc.), they allow for 
the monitoring of animals with minimal disturbance (Tomkiewicz 
et al., 2010). To date, these tags can lack the resolution or accu-
racy to detect fine-scale interactions on free-living animals. Pairing 
video recordings and bio-logging data can help researchers to 
overcome these issues, as done to study hunting behaviour of tiger 
sharks (Andrzejaczek et al., 2019). Moreover, tags are constrained 
by a trade-off between their size and battery life that may lead to 
either high intensity monitoring over short periods or long-term 
monitoring with low sampling rates (Krause et al., 2013). The type 
of biological questions one is out to explore as well as the natural 
history and physiology of the study organism can help determine 
the duration and intensity of the remote sampling. For example, 
large-bodied animals that can carry large tags may be equipped with 
GPS loggers that record the position of animals in high spatial and 
temporal resolution for a substantial portion of their lives. GPS data 
can be downloaded remotely via the cellular network, or manually 
from the tags after they are retrieved from the animals; notably, 
the latter method of data retrieval is more invasive than the former. 
Additional recording devices can be added, including accelerome-
ters, audio recorders and heartbeat monitors to augment the spa-
tial data with behavioural, acoustic and physiological data (Williams 
et al., 2019). While these tags work particularly well for monitoring 
animals over large spatial scales and in open habitats, they can be 
expensive, limited by battery/memory size and potentially problem-
atic in densely vegetated habitats and mountainous terrain (Hughey 
et al., 2018; Krause et al., 2013). They can also pose substantial 
challenges with respect to their needs for validation, calibration 
and management of devices (Brown et al., 2013). An alternative 
solution that does not require large tags is a radio frequency iden-
tification detection (RFID) system that detects passive-integrated 
transponder (PIT) animal-borne tags. These lightweight tags are in-
expensive and small because they do not need to be powered with 
a battery or store information on board. Instead, the tag is activated 
when the animal passes near a tag-reader, which can be placed by 
a feeder (Evans & Morand-Ferron, 2019) or an entrance to a nest 
(Robinson et al., 2014) or burrow (Smith et al., 2018). RFID tech-
nology is suitable for tracking a large proportion of the population 
with little disturbance during data collection. However, it is limited 
in the spatial resolution because of the distances between the sta-
tionary tag-readers, which can result in missed detections of animal 
associations.

Direct social interactions may be detected remotely via proxim-
ity loggers that record tag-to-tag communication when they are in a 

certain range of each other (Böhm et al., 2009; Haddadi et al., 2011; 
Rutz et al., 2012). This method requires both interacting animals to 
wear tags. As stated above, tags are limited by the trade-off between 
their weight and on-board data storage and battery life. Furthermore, 
proximity tags require extensive calibration to ensure accuracy 
(Boyland et al., 2013; Ripperger et al., 2016), and tagging a large pro-
portion of the population to obtain a substantial number of interac-
tions can be costly. A major benefit of proximity loggers over other 
automated technologies is that interaction data can be inferred from 
individuals of known identities coming within a specified distance 
from one another (Krause et al., 2011). That said, recent advances in 
Unmanned Aerial Vehicles (UAVs, e.g. ‘drones’) could offer an excit-
ing alternative to proximity loggers for social monitoring. UAVs may 
capture social interactions of all group members simultaneously with 
limited disturbance to the subjects (e.g. no tags or human presence). 
However, drones can be expensive to deploy and are not allowed 
in certain locations (e.g. national parks in the United States), thier 
tracking duration is limited by short battery life spans, their noise 
can interfere with animal communication, and post-processing of the 
data captured can be laborious and require elaborate and intensive 
computation. To date, research reliant upon drones mostly focuses 
on conservation questions, such as monitoring numbers of elephants 
(Vermeulen et al., 2013) or deer (Chrétien et al., 2016). Drones have 
captured the behaviours of social animals, including feral horses (Inoue 
et al., 2019; Ozogány & Vicsek, 2014) and whales (Torres et al., 2018). 
Going forward, we anticipate these tools to advance the study of the 
animal social networks.

Machine vision tools are creating opportunities for remote 
sensing of context-specific animal interactions at high spatial and 
temporal resolutions. First, automated video analysis is used to de-
termine the position of animals and detect interactions (Weinstein 
& Ben Weinstein, 2018). Machine learning algorithms recognize 
the type, nature and context of the interaction (Robie et al., 2017). 
For reviews that detail the intricacies of machine learning and re-
alty mining in animal behaviour, see Krause et al. (2013) and Valletta 
et al. (2017). Reviews that expand on interpreting accelerometer 
data provide information on specific algorithms, such as random for-
ests (Fehlmann et al., 2017), simulations (Barkley et al., 2020) and 
decision tree methods (Nathan et al., 2012). Many of these machine 
vision tools have been developed for animals that are tagged (e.g. 
with two-dimensional barcodes in laboratory environments: Gernat 
et al., 2018; Greenwald et al., 2015; Heyman et al., 2017; Stroeymeyt 
et al., 2018; Figure 1a). Untagged animals may also be detected 
(Bozek et al., 2020; Gal et al., 2020; Hein et al., 2018; Pinter-Wollman 
et al., 2011; Rosenthal et al., 2015; Strandburg-Peshkin et al., 2013; 
Figure 1b,c). Furthermore, recent developments in drone technology 
and acoustic monitoring are bringing these machine-vision-based 
tools into the field; cameras deployed on drones can monitor the be-
haviour of animals in their natural environment (Torres et al., 2018). 
These approaches are extremely computationally intensive, and may 
require substantial time for tagging individuals. Moreover, long-term 
monitoring requires the hardware and software to store, access and 
analyse terabytes of image data. Still, the potential to obtain data 
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on both the location and timing of social interactions as well as the 
nature of the behaviour during, before and after the interactions, 
remotely, without disturbing the animals, is alluring.

In light of the bio-logging revolution and recent advances in social 
network theory, it is time to revisit the major observational methods 
outlined by Altmann (1974): (a) ad libitum sampling, (b) sociomet-
ric matrix completion, (c) focal animal surveys, (d) all-occurrence 

sampling, (e) sequential sampling, (f) instantaneous and scan sam-
pling and (g) one-zero sampling. We consider the value added by 
automated approaches, as well as their shortcomings, by evaluating 
the limitations of traditional approaches, improvements due to au-
tomation and limitations of automation, for each sampling method 
(defined in Table 1); we exclude one-zero sampling from our table 
because of the inherent biases identified by Altmann (1974).

TA B L E  1   Revisiting Altmann (1974): Observational study of behaviour in the age of big data

Sampling methoda 
Limitations of traditional 
approach Improvements due to automation Limitations of automation

Ad libitum: Opportunistic 
recordings of behavioural 
states or events without 
systematic constraints

The observer records 
only what they can see 
and what they think is 
relevant at a given time

- Continuous gathering of a diversity of 
behaviours, including those previously 
hidden (e.g. too subtle to detect or in 
hidden spaces)

- The spatial and temporal resolution 
of sampling has increased with 
automated sensing

- Interference to animals and bias about 
the relevance of the data collected 
have decreased

- Not all acoustic and visual information 
can be recorded

- Devices attached to animals are 
limited by their size, battery life, 
visual/auditory scope and budget

Sociometric matrix 
completion: Recording 
behavioural acts of dyads 
during direct observations 
in the field

Social network analysis 
has transformed the 
utility of sociometric 
matrices completion; 
these grids are the basis 
for most animal network 
analyses today

- Continuous data collection of 
large datasets over vast spatial 
and temporal scales increases 
opportunities for studying network 
dynamics

- Pairing of proximity loggers with 
on-board cameras and bio-loggers to 
track physiology could prove useful

- Most proximity loggers fail to  
quantify the nature of exchanges  
(e.g. asymmetric, friendly, agonistic)

Focal animal surveys: 
Collection of all states or 
events for one individual 
over time

A human must follow an 
animal and record all 
its behaviours; this is 
very time-intensive and 
produces data on only 
one individual at a time

- Permits for the recording of multiple 
focal individuals simultaneously  
over a variety of temporal and spatial 
scales

- Reveals sequential patterns, nearest 
neighbours and activity budgets at 
multiple levels of social organization

- Limits biases from human presence on 
behaviour

- While technologies may detect some 
behaviours that are too subtle for the 
human eye to observe, they can miss 
certain states or events (lack realism)

All-occurrence sampling: 
Collection of previously 
specified sets of events

Limited to a small subset 
of all possible behaviours 
at any given time

- Permit for recording and extraction of 
all behaviours in visual and/or audio 
range, including those that have not 
been previously identified

- Records data on multiple individuals at 
once

- Analytic improvements provide 
insights into the synchrony of 
collective behaviours

- Many automated methods are 
limited in their ability to distinguish 
among various ecologically relevant 
behaviours (e.g. grooming, coalition 
formation)

- Synergy between direct and 
automated methods can overcome 
these shortcomings

Sequential sampling: 
Recording all behaviours 
in the order of occurrence 
until the sequence ends

Method can introduce 
biases due to the way 
sequences are selected 
because observer must 
decide when to start 
and end collection of 
sequences

- High sampling throughput
- Standardizes detection of the 

timing of sequences through the 
continuous recording of multiple social 
interactions before they start and 
after they end

- Limitations in ability to distinguish 
among different ecologically relevant 
behaviours

- Synergy between naturalistic 
observations and automated methods 
can overcome these shortcomings

Instantaneous and scan 
sampling: Recording 
of activity or state at 
preselected time points

Collecting data at 
prescribed intervals 
misses behavioural acts 
that transpire between 
samples

- Continuous collection of data allows 
for subsequent data filtering into 
scans as needed (e.g. using machine 
learning algorithms)

- Difficulties in distinguishing among 
different behaviours

- Scan sampling could be used to 
increase battery life and space for data 
storage

aOne-zero sampling is excluded due to the inherent biases detailed by Altmann (1974).  



     |  67Journal of Animal EcologySMITH and PInTER-WOLLMan

3  | SOCIAL NET WORK ANALYSIS OF 
HIGH-THROUGHPUT DATA

Social network theory offers a powerful suite of statistical tools 
to model and predict the influence of salient ecological parame-
ters (Farine & Whitehead, 2015; Jacoby & Freeman, 2016; Pinter-
Wollman et al., 2014; Sih et al., 2009, 2017; Wey et al., 2008). 
Although network analysis offers the potential to disentangle multi-
ple ecological drivers that underlie animal social behaviour, its imple-
mentation requires careful consideration, particularly with respect 
to hypothesis testing and statistical inference (Croft et al., 2011; 
Farine, 2013, 2017; James et al., 2009; Silk et al., 2017). Specifically, 
there is no single approach for analysing social network data. 
Because of the interdependencies among individuals, comparing 
observed data to null models (also, referred to as reference mod-
els; Gauvin et al. (2018)) is a common approach. Reference models 
can be generated using a number of randomization procedures. The 
randomization procedures must be very carefully chosen and will 
depend on the biological question asked. Thus, while there are use-
ful tools for conducting randomizations of animal social networks, 
they should be used judiciously to avoid testing hypotheses that are 
irrelevant to the biological system or question of interest.

Automated behavioural tracking systems provide new oppor-
tunities for studying social behaviour in different ecological situ-
ations (Williams et al., 2019), and at different temporal scales (Dell 
et al., 2014). The pairing of social network theory with information 
on the physical environment in which the interactions occur is of-
fering new insights into these processes. Another such opportunity 
for technological synergy is the integration of multiple data streams 
on the physical environment, such as from light detection and rang-
ing, e.g., NEON and satellite images, with social network and animal 
movement data (He et al., 2019; McLean et al., 2016). For example, 
a study of decision-making in wild baboons (Strandburg-Peshkin 
et al., 2015; Figure 1d) integrated information on habitat features with 
information on social interactions (Strandburg-Peshkin et al., 2015, 
2017). Furthermore, a study of sociality in sleepy lizards integrated 
the effect of animal social movements with information on social in-
teractions (Spiegel et al., 2017; Figure 1e). High-frequency multivar-
iate data can be used to test hypotheses about the ecological and 
evolutionary contexts of social behaviour. For example, Markov chain 
Monte Carlo (MCMC) approaches offer a powerful means for analys-
ing large, complex datasets (Handcock et al., 2007). Such advances 
will inform our understanding of the ecological forces that shape 
social behaviour and generate predictive models of social behaviour.

4  | CONFRONTING OBSERVER BIA S:  NE W 
CHALLENGES AND OPPORTUNITIES

Traditional observational methods of behavioural data collection may 
generate biased samples by influencing the subject's behaviour, or due 
to observer biases (Altmann, 1974). Automated sensing of behaviour has 
the potential to mitigate these biases by standardizing data collection 

techniques and permitting data collection with little disturbance by the 
human observers (Table 2). Specifically, automated tracking permits the 
monitoring of undisturbed animals for long uninterrupted periods, of-
fering clues to how animals react to each other and other features of 
their environment in real time (Cooke et al., 2004; Dell et al., 2014; Kabra 
et al., 2013; Ropert-Coudert & Wilson, 2005; Williams et al., 2019; 
Wilmers et al., 2015). It is worth noting that the presence of a tag on an 
animal may change a subject's behaviour (Coughlin & van Heezik, 2014) 
or its interactions with other individuals (Burley, 1986). GPS loggers, 
proximity loggers and accelerometers require catching the animals and 
attaching the device to them. Unless automated drop off mechanisms 
are available, researchers must recapture subjects to retrieve the track-
ing equipment. Drones may offer a less invasive alternative (Hodgson 
& Koh, 2016), especially if flown high with a telescopic lens as to not 
disturb subjects (Fettermann et al., 2019) or after a short habituation 
period (Ditmer et al., 2018). Second, automated methods facilitate the 
measurement of multiple variables at once, thus reducing the likelihood 
of missing measurements of previously unknown drivers of sociality. 
These new candidate variables may be used to parameterize social net-
work models to partition out their relative effects on social processes 
and test meaningful hypotheses.

Automated tracking is not free of biases, and animal ecologists 
must carefully consider potential sources of new errors or biases in-
troduced by automation (Table 2). Automated tracking can lead to 
statistical dependencies and require selecting appropriate statistical 
methods. First, automated methods could lead to statistical non- 
independence because of their capacity to record multiple streams 
of high-throughput data, particularly in systems for which movement 
patterns covary predictably with sociality (Albery et al., 2020). For in-
stance, high-resolution proximity loggers reveal that two correlated 
behaviours—an individuals' social network position and ranging 
behaviour—explain epidemic outcomes in free-ranging domestic dogs 
(Wilson-Aggarwal et al., 2019). Second, each automated method must 
be carefully validated using naturalistic observations. For example, 
accelerometer data need to be validated with direct observations of 
the animals' behaviour to provide reliable training sets for the machine 
learning algorithms that later automate the inference of behaviours 
from accelerometer data streams (Hammond et al., 2016; Wikelski 
et al., 2007). Similarly, researchers must select biologically meaning-
ful criteria for defining social network ties rather than deferring the 
definition of an interaction to the limits of the technology that is col-
lecting the raw data (Psorakis et al., 2012). For example, a long range 
of a sensor or low sampling frequency might force a researcher to use 
larger spatial and temporal thresholds in their definition of interac-
tions through spatiotemporal co-occurrence than would be relevant 
according to the sensory capacity of the species (Haddadi et al., 2011). 
Third, tracking technologies may be restricted to only a few individ-
uals in a social group because tags are expensive or could harm the 
growth of juveniles. Thus, researchers may have a limited ‘social reso-
lution’ of the group activity and be potentially limited in the scope of 
inference to the specific demography (e.g. adults) that is being tracked 
(Shizuka & Johnson, 2020; Spiegel & Pinter-Wollman, 2020). In other 
cases, sensors that require retrieval may be intentionally deployed on 
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animals that are bold or easily captured. This biased tagging can lead to 
unintended dependencies on the personalities of the individuals that 
are being tracked. Such a bias in sampling might, for example, influence 
network studies aiming to understand how individual differences in 
behaviour shape social networks (Krause et al., 2010; Sih et al., 2009; 
Wilson et al., 2015). Fourth, researchers must be mindful of the dura-
tion over which tags remain active on animals because animals differ 
in how easy they are to locate or simply in the duration over which the 
tags remain on them. If such differences are not accounted for, animals 
that are tracked for longer durations might seem more central in a so-
cial network than others simply because of differences in the amount 
of data available for them (Spiegel & Pinter-Wollman, 2020). Finally, re-
searchers must match the statistical tools they use to the tracking data 
they obtain. For instance, using statistical tools developed for contin-
uous data might not be appropriate for discrete data and vice versa.

Computer simulations can aid in assessing different biases for 
data collected from direct observations and when using automated 
methods. Such simulations can uncover the extent to which social 
networks are affected as a result of different biases and different 
sampling methods and efforts (Aguiar et al., 2018; Davis et al., 2018; 
Silk et al., 2015). Simulations are often used by ecologists to esti-
mate bias in abundance calculations, such as when using acoustic 
monitoring (Balantic & Donovan, 2019), but are still an underutilized 
tool in social network studies. For example, simulations uncovered 
that telemetry data can result in overly connected networks and 
create biases in global and node-level network measures (Gilbertson 

et al., 2020). One useful approach is to compare the robustness and 
certainty of animal social network measures collected via direct (e.g. 
human observers) and automated (e.g. high-resolution GPS collars) 
methods (Davis et al., 2018). Such comparisons must be done care-
fully because networks constructed based on different methods are 
not always comparable (Castles et al., 2014). Moreover, when the 
goal is to infer social interactions from spatiotemporal proximity, re-
searchers must keep in mind that interactions may result from the 
joint use of resources, rather than from social preference, when data 
are explicitly linked to ecological information (Spiegel et al., 2016). 
Researchers may use spatial information about resources and as-
sociations to tease this apart (Spiegel & Pinter-Wollman, 2020). 
Furthermore, simulations may be useful to disentangle whether 
spatial constraints or social preferences are the drivers of the so-
cial associations using agent-based models (Pinter-Wollman, 2015), 
gregariousness-corrected association indices (Godde et al., 2013) or 
permutations of movement data (Spiegel et al., 2016).

5  | INTEGR ATING THE BEST OF T WO 
WORLDS: DIREC T OBSERVATION AND 
AUTOMATED DATA COLLEC TION AND 
CL A SSIFIC ATION

Altmann (1974) recognized the value of sampling using more than 
one method in a study. She suggested that samples may be taken 

TA B L E  2   Comparisons and synergies of classic versus automated tools for sampling behaviour

Most apparent Pro Most apparent Con Opportunities for synergies

Classic, observational methods for the study of behaviour

Direct observations High level of realism and 
cost-effective

Labour-intensive, observer bias in 
applying ethogram to subjects, 
low spatial and temporal 
resolution

Can augment automated data to provide 
an ecological and social context or to 
compare between contexts that are 
easily observed versus those hidden from 
observers using non-automated methods

Automated tools for studying animal behaviour

Location detection

GPS, VHS, satellite 
tags

Low observer bias Expensive Data acquired automatically can be 
augmented with direct behavioural 
observations to provide context; 
automated data may also augment 
direct observations of interactions with 
encounters in locations that cannot be 
accessed or seen by researchers

Passive tags Relatively cheap Low spatial resolution

Proximity loggers Remote sensing of contacts when 
animals cannot be observed 
directly

Low ‘social resolution’ because the 
cost and mass of units prohibit 
the tagging of all individuals in a 
population

Image analysis Little disturbance to subjects Computation power required

Behavioural assignment

Accelerometers Remote sensing of behaviours when 
behaviours cannot be directly 
observed, or observed at the 
desired scales, using traditional 
methods

Time required for validation; costs 
and mass of units prohibit the 
tagging of all individuals in a 
population

Increase sampling quantity and efficiency; 
allows inferring behaviours when animals 
cannot be observed directly to augment 
direct observations in other situations

Computer vision Collection of high-throughput data 
of behavioural sequences with 
limited labour from humans

Time required for validation and 
computational processing time of 
large datasets
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successively, under favourable conditions, or even concurrently. Use 
of these standardized methods for direct observation by human ob-
servers has yielded numerous long-term datasets that have greatly 
contributed to our understanding of animal social systems, particu-
larly for free-living mammals (Alberts, 2019; Hayes & Schradin, 2017; 
McDonald et al., 2018; Smith, Lehmann, et al., 2017). Automated-
sensing tools extend these traditional approaches by permitting 
observation of social behaviours from the animal's perspective 
(Table 2). This is particularly useful for studying animals that social-
ize in spaces that are challenging to observe, such as in the ocean or 
terrestrial refugia (Figure 2). For example, tracking with RFID allows 
documenting phenomena that are otherwise hidden from human ob-
servers, including the diffusion of novel foraging techniques across 
social networks in the nests of great tits (Aplin et al., 2015; Figure 2a), 
long-term social relationships of Bechstein's bats across roosting sites 
(Kerth et al., 2011; Figure 2b), social monogamy in prairie vole nests 
(Sabol et al., 2018) and consistent social network traits of California 
ground squirrels aboveground and belowground (Smith et al., 2018; 
Figure 2d). Accelerometers are revealing fine-scale patterns of lead-
ership in the social networks of lemon sharks when hidden behind 
coastal vegetation (Wilson et al., 2015; Figure 2c). Similarly, acoustic 
telemetry data permit tracking marine fishes (Finn et al., 2014) or ma-
rine predators (Williams et al., 2018) whose social networks would 
otherwise be challenging to observe. In these ways, automated track-
ing tools are particularly valuable in that they offer opportunities to 
overcome long-standing and widely recognized methodological issues 
(Altmann, 1974) associated with the study of secretive, cryptic and/or 
highly mobile free-living animals. For example, in wildlife conserva-
tion, ecologists combine the use of automated acoustic monitoring 
and occupancy modelling of species; this combination improves detec-
tion while reducing false-negative detections (Campos-Cerqueira & 
Aide, 2016). Integration of automated and manual classification could 
reduce biases in the study of social behaviour. Even in controlled labo-
ratory settings, integration of direct observations, image analysis and 
social network tools is sometimes required to reveal otherwise hid-
den information (Fewell, 2003; Mersch et al., 2013; Pinter-Wollman 
et al., 2011; Stroeymeyt et al., 2018). For instance, combining insights 
from automated tracking, controlled pathogen exposure, transmission 
quantification and simulations revealed that infected animals socially 
isolate themselves from the group (Gernat et al., 2018; Stroeymeyt 
et al., 2018). Notably, these behaviours were only apparent when re-
searchers implemented a combination of many tools.

Social network analysis of data collected from animal-borne sen-
sors can improve our understanding of processes that are challeng-
ing to quantify or visualize due to their elaborate or dynamic nature 
(Blonder et al., 2012; Pinter-Wollman et al., 2014; Silk et al., 2018). 
Recent advances include uncovering the ecological drivers of asso-
ciations (Cross et al., 2013), factors stabilizing cooperation (Patzelt 
et al., 2014) and covariates of disease transmission within (Craft, 2015; 
Hamede et al., 2009; Silk et al., 2017; Stroeymeyt et al., 2018; White 
et al., 2017) and between species (Böhm et al., 2009). Furthermore, 
multilayer network approaches now allow for the integration of eco-
logical and social processes into a single framework (Silk et al., 2018) 

and for combining behaviours in different situations and across time 
(Finn et al., 2019). When integrating direct observations and auto-
mated data collection, one should keep in mind potential associated 
pitfalls. For example, automated acquisition and direct observations 
may occur at different times (e.g. night and day) and/or locations (e.g. 
near a field site or in a remote location that is challenging to reach). 
The different types of data can further be recorded at different tem-
poral and/or spatial resolutions. For example, automation might re-
cord events every second while observations might be recorded only 
every few minutes. If one chooses to combine measurements that are 
collected at different temporal resolutions, they might need to aggre-
gate or subsample the automated measures. Alternatively, one could 
use both types of measurements to learn about different aspects of 
the system and keep their statistical analyses separate.

6  | NE W OPPORTUNITIES AND 
UNANSWERED QUESTIONS: A PATH 
FORWARD

Advances in bio-logging science have offered remarkable insights 
into understanding locomotion, feeding behaviour, energy ex-
penditure, physiological thresholds and other biological processes 
(Evans et al., 2013). Animal-borne sensors and remote sensing 
data about the environment could uncover new insights on animal 
sociality (Table 3). Although rarely paired with the study of social 
behaviour, bio-loggers can provide information on behaviour (e.g. 
foraging, grooming, etc.), heart rates and body temperatures of rec-
ognizable individuals over time (Le Grand et al., 2019; Wassmer & 
Refinetti, 2019). The value of this added information is especially 
evident when combined with tracking technology that offers high- 
resolution spatial data (Kays et al., 2015; Krause et al., 2013). 
Combining information from multiple sources of automated moni-
toring systems can be challenging, as detailed in Table 1 in Krause 
et al. (2013). To date, multi-modal data on free-living animals have 
been underutilized to test hypotheses about social behaviour. Within 
the context of social networks, data on contacts among animals 
may be integrated with knowledge about ecological context, physi-
ological state of individuals and acoustic information. For example, 
multilayer network approaches could offer insights about how the 
relationship between microhabitat features and social connections 
influences group dynamics (Finn et al., 2019).

Sensors of animal physiology can track socially relevant bio-
markers to address the largely understudied proximate mechanisms 
of social network structure (Croft et al., 2016). For instance, heart-
rate monitors can reflect states of arousal (Wascher et al., 2008) 
and responses to social (Viblanc et al., 2012) and non-social 
(Ditmer et al., 2018) stressors. These devices could be paired with 
proximity loggers to track real-time physiological responses to so-
cial interactions. Although limited examples link social behaviour 
to these on-board measures, monitors have revealed significant 
increases in the heart rates of greylag geese in social versus 
non-social contexts (Wascher et al., 2008). In naturalistic settings, 
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animal-mounted physiological sensors can provide opportunities 
for investigating natural environmental perturbations to study 
how ecological processes, such as drought, shape—or are shaped 
by—social processes (Henzi et al., 2009; Holekamp et al., 2012; de 
Silva et al., 2011; Smith et al., 2018). Internal temperature loggers 
could offer new ways to examine how social integration buffers 
mammals from environmental stressors, such as thermal stress 
(Young et al., 2014). Skin-associated patches are being developed 
to track physiological variables, including cortisol to monitor stress 
reactivity in humans (Lee et al., 2016). These tools could also elu-
cidate the physiological mechanisms triggering prosocial and an-
tisocial behaviours in natural settings (Montgomery et al., 2018; 
Smith, Petelle, et al., 2017). Applications of these technologies to 
free-living animals could offer insights into real-time reactivity—as 
well as accumulated physiological responses across the life span—
to social and ecological stressors.

Recording devices such as microphones, accelerometers and 
light sensors can augment studies of social behaviour in ways that 
have not been explored yet. Microphones and other acoustic re-
cording instruments can be used to investigate stressful environ-
ments. For example, while developmental ‘stress’ predicts network 
position in captivity (Boogert et al., 2014), evidence of a causal link 
between basal ‘stress’ and network attributes in free-living animals 
is mixed (Szipl et al., 2019; Wey & Blumstein, 2012). Animal-worn 
acoustic monitors and microphone arrays could offer insights into 

the mechanisms that promote social interactions or disrupt cohe-
sion. For example, vocalizations recorded may be associated with 
territorial defence, mate attraction, predator deterrence, foraging or 
group cohesion (Blumstein et al., 2011). Automated recordings can 
further provide insights on the spread of social information across 
networks. However, to date, only a few studies have integrated 
acoustic signalling with social network studies. Accelerometers 
could uncover energetic costs of social cohesion for mobile foragers. 
Light sensors, accelerometers and magnetometers (which detect an 
individual's position relative to the earth's magnetic field) could to-
gether map social networks hidden from observers because animals 
are below-ground or inside nests. For example, dead-reckoning, the 
calculation of an animal's positions using estimates of speed and 
course over time, is being used to track underground path use of a 
gregarious carnivore, the European badger, within its underground 
sett (Walker et al., 2015). Researchers could use graph theory to 
analyse overlapping paths of animals over time to reveal new infor-
mation about their social lives in contexts previously hidden from 
observers.

7  | CONCLUSIONS

Recent technological developments are leading to an explosion 
in data streams that are available for the study of animal sociality. 

TA B L E  3   Classic versus automated tools for sampling non-behavioural traits of subjects and their environments

Most apparent Pro Most apparent Con Opportunities for synergies

Classic methods: Biological samples and measures collected directly from animals

Blood and tissue Provides ample physiological 
data on immediate hormonal 
status and for genetic analysis

Labour-intensive, invasive sampling 
(e.g. requires live capture of 
subjects)

Direct measures of hormonal levels, 
gene expression, physiological state, 
body condition and growth have 
the potential to provide proximate 
explanations for data collected using 
automated methods and/or direct 
observations

Faecal samples Minimally-invasive sampling of 
glucocorticoid metabolites, 
microbiome; provides 
long-term insights into 
physiological status

Labour-intensive, provides 
metabolized version of hormones 
and microbes of interest, both of 
which may degrade between time 
of deposition and processing

Mass and body measurements Direct and simple measures Limited information

Automated methods: Animal-borne sensors, image capture and high-throughput environmental sampling

Sampling of non-behavioural traits of subjects

Animal-borne sensors  
(e.g. heart rate/temperature 
monitors, magnetometers, 
accelerometers, light sensors)

Real time and accurate data 
with little disturbance to 
subject

Deployment and recapture of units 
could be invasive; cost and mass 
prohibit tagging all individuals in a 
population

Provide proximate explanations for 
location data collected automatically 
and/or direct observations

Indirect measures of body  
size or growth  
(e.g. photogrammetry, image 
analysis)

Permits for measurements 
of animals from a distance 
and without capture using 
photographs and/or lasers

Validation required to connect 
measures of growth to measures 
of maturity and health; expensive 
and still labour-intensive

Can offer insights into life-history 
stage of animals observed

Sampling of the external environment

Data on the physical 
environment (e.g. image 
analysis, weather sensors)

High spatial and temporal 
resolution with limited 
disturbance to subjects

Computation power required Provide ecological context for both 
remotely sensed data and direct 
observations; May be collected 
remotely and independently from the 
subjects that are being monitored



     |  71Journal of Animal EcologySMITH and PInTER-WOLLMan

Going forward, these advances offer numerous opportunities for 
collaboration among ecologists, behaviourists, physiologists, statis-
ticians, mathematicians, physicists, engineers and computer scien-
tists to apply new tools—grounded in classic natural history studies 
of animals—to address long-standing questions and motivate new 
ones about the complexity of animal social lives.
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